

"In vitro Comparison of Head-Neck Taper Junction vs. Bone-Stem Interface Fretting Corrosion in a Total Hip Arthroplasty Model"

Maria João Runa¹ K. Takami¹; L.A. Rocha²; M.T. Mathew¹; N. Hallab¹

¹ Department of Orthopedic Surgery, Rush University Medical Center, 60612 Chicago, IL, USA.
² UNESP – Univ. Estadual Paulista, Faculdade de Ciências de Bauru, Brazil.

2/21/14

Motivation

- Release of metal ions and wear debris
- Inflammation
- Osteolysis
- Crack initiation
- Loosening of the implant

Motivation

Motivation

Hypothesis: The amount of fretting-corrosion that occurs at the Bone-Stem interface is greater than at the Head-Neck taper junction*.

Goal: Measure the **OCP voltage drops** associated with low and high loads at the bone-stem (Ti6Al4V alloy) interface.

* Based on previous studies from the group (not published).

Bone-Stem

interface

Experimental details

Bone-stem fretting systems:

Experimental details

Bone-stem fretting systems:

Insertion test:

- Rate of 10mm/min up to 2cm press fit
- 8800 Instron test frame
- Cyclic loading test:
 - Stage (1): low load (100N-500N)
 - Stage (2): higher loads (500-2000N)
- Electrochemical measurements:
 - Open circuit potential (OCP)
 - WE Ti6Al4V rod
 - RE SCE

Results

Evolution of potential:

7

Results

Potential drop: head-neck* vs. bone-stem

Fretting-corrosion at the Bone-Stem interface was significantly greater than at the Head-Neck taper junction.

* Based on previous studies from the group (not published).

Summary

- Hypothesis supported.
- **Press-fit into femoral bone**: free potential behavior is strongly dependent on the unique morphology of the bulk bone and the unique contact areas of Ti6Al4V stem.
- Amount of fretting-corrosion at the bone-stem interface is higher than that previously reported for metal-on-metal taper junction [1].
- The identification of fretting-corrosion behavior at **two locations** of hip implants may indicate critical instability of the electrochemical system, where the **synergistic interaction** of fretting and corrosion may accelerate degradation mechanisms in some patients.

Future Work

- Fretting-corrosion in sawbones (polyurethane foam with properties similar to trabecular bone)
- Perform EIS tests
- Perform potentiostatic tests (applied potential)
- Synergism between corrosion and wear mechanisms.

Acknowledgements

Portuguese Foundation for Science and Technology FORMAÇÃO PARA A CIÊNCIA E ENSINO SUPERIOR MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

Portuguese Foundation for Science and Technology (FCT), Doctoral Grant ref. **SFRH/BD/77750/2011**.

Grant R03-AR064005-01

Thank you

Questions?

