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Background 
• Main reasons for revision 

• Aseptic loosening 

• wear and corrosion synergistically affect implant surface1 

• Instability and lack of osseointegration2 

• Implant surface does not readily promote cellular attachment 

• Poor bone quality and quantity 

• Over activity3 
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1. Yousef Abu-Amer et al. Arthritis Res Ther. 2007; 9(Suppl 1): S6. 

2. Claudia Cristina Montes, et al. Implant Dentistry. Volume 16 (4). 401-408. 

3. "Total Joint Replacement Patients Should Stick to Low-Impact Sports," BioMechanics 5(3):71-75, 1998. 
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Tribocorrosion of Thermally Treated Ti-V 
Samples 
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• Thermally treat Ti-V surfaces at temperatures of 200, 400, and 700 °C 
at 1 and 6 hours 

• To test the effect of crystalline structure and oxide thickness on tribocorrosion 
and corrosion  

• Artificial Saliva (AS) at 37 °C 

• pH 6.5 ~ basic, normal conditions 

• pH 3.0 ~ infection 

• Validate custom designed and built tribocorrosion apparatus 

• Hypothesis: 

• Crystalline and thicker oxide will protect bulk Ti-V from tribocorrosion and 
corrosion as compared to native TiO2 



Source # Citation Working Electrode
Reference 
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Position of 

Ref. 

Electrode

Counter 

Electrode
Electrochemical Cell Electrolyte and Volume Pin Movement Comments

1
P. Jemmely, et. al., 

1999.
AISI 430 Steel

Mercury 

Sulfate 

Electrode 

(MSE)

3 mm above 

and 10 mm 

away from 

sample

Coiled 

Platinum (Pt) 

Wire

 Polyvinyl Chloride 

(PVC)

60 ml; 0.5 M H2SO4; 1 M 

NaOH

Alumina Pin w/ Flat 

Bottom

Pin Reciprocal Linear; 5, 10, and 20 Hz; Triangular 

Waveform Signal of Constant Amplitude; Track 

Length: 2.3-2.9 mm; Dead-time = 29 ms; 4-45 Mpa

Load Cell for Normal Force, Piezoelectric Force 

Transducer for Frictional Force, a LabView software 

with 32 kHz acquisition frequency 

2
S. Mischler, et. al., 

1999.

DIN 34CrNiMo6 Carbon 

Steel
MSE

3 mm above 

and 10 mm 

away from 

sample

Pt Wire PVC

Borate Buffer Solution of pH 

8.4 (H3BO3/Na2B4O7 0.3 

M/.075 M)

Alumina Pin w/ Flat 

Bottom

Pin Reciprocal Linear; 5 Hz; Truncated Triangular 

Waveform Signal of Constant Amplitude; Track 

Length: 5.0 mm; 2, 5, 10 N

Load Cell for Normal Force, Piezoelectric Force 

Transducer for Frictional Force, a software with 10 

kHz acquisition frequency

3 J. Takadoum, 1996.
Nickel and Iron of 

99.95% Purity

Hg2SO4 

Electrode 

(ESS)

_ _ _
2 cm2 Pt 

Sheet
Teflon

Aerated H2SO4 Solution; .01 - 

1 M

Alumina Sphere (D= 5 

mm)

Reciprocal Rotation of Ball; 0.2 Hz; Truncated 

Triangular Waveform Signal of Constant Amplitude; 

Track Length: 15.0 mm; 3.5 N

Strain Gauge for Frictional Force, a software with 10 

kHz acquisition frequency

4
Sh. Hassani, et. al., 

2009.

AISI 1045 Carbon Steel 

w/ Electrodeposited Ni-

Co Coating

Standard 

Calomel 

Electrode 

(SCE)

_ _ _
Coiled Pt 

Wire
_ _ _

10 w/w % NaOH Solution at 

pH 13.2

Alumina Sphere (D= 4.75 

mm)

Reciprocal Rotation of Ball; Classic Slider-Crank 

Mechanism; 1 Hz; Track Length: 5.0 mm; 4.5 N
Load Cells for Normal and Frictional Force

5
A. Berradja, et. al., 

2006.
Stainless Steel AISI 304L

Hg/Hg2SO4/S

aturated 

K2SO4

_ _ _
Circular Pt 

Gauze
_ _ _

0.5 M H2SO4; Ringer's 

Solution w/ 8.402g/L NaCl, 

0.302 g/L KCl and 0.298 g/L 

CaCl2 6.6 pH

Corundum Cylinder (D= 

7 mm) with Spherical End 

(D= 200 mm)

Continious and Intermittend Unidirectional Circular 

Motion r= 8 mm;  6, 60, and 120 rpm; 5 and 20 N (96 

and 207 MPa

_ _ _

6
S. Mischler, et. al., 

1993.
Armco Iron Plate _ _ _ _ _ _ _ _ _ PVC

60 ml; H2SO4: 2, 6, 8, 10, 14, 

18 M; Double-distilled Water

Alumina Pin (D= 4 mm) 

w/ Truncated Cones (D= 

.5 mm, 120* Included 

Angle)

Pin Reciprocal Linear; 5 Hz; Triangular Waveform 

Signal of Constant Amplitude; Track Length: 5 mm; 

Rest-time = 29 ms; 5 N = 25 MPa

Load Cell for Normal Force, Piezoelectric Force 

Transducer for Frictional Force, a LabView software

7
A. Berradja, et. al., 

2006.

AISI 304L and SS 3M 

Stainless Steel

Ag/AgCl (3 M 

KCl)
_ _ _

Pt 

Microelectrod

e

_ _ _

Ringer's Solution: 8.402g/L 

NaCl, 0.302 g/L KCl and 

0.298 g/L CaCl2, 6.6 pH 

Corundum Sphere (D= 10 

mm)

Reciprocal Rotation of Ball (Fretting); 1, 10 Hz; 

Truncated Triangular Waveform Signal of Constant 

Amplitude; Track Length: 200 um; 1, 2, and 5 N = 493, 

621, 842 MPa

_ _ _

8 D. Sun, et.al. 2009. CoCrMo (ASTM F75) Ag/AgCl _ _ _

Platinized 

Titanium and 

Graphite

_ _ _

0.9 % NaCl; 25 % Bovine 

Serum (BS); Slurries for 3-

Body Wear: SiC F1200 and 

Al2O3

ZrO2 Sphere (D= 25.4 

mm)
Unidirectional Rotation of Ball; 4.0 GPa = 98 N CMS100 and ESA400 Software

9
M. S. Jellesen, et. 

al., 2007.
Stainless Steel AISI 316L SCE

1 cm away 

from sample
Titanium Net Polypropylene 0.5 M H2SO4 Alumina Ring

Reciprocal Rotation of Ball; Sinus-wave Frequency, 15-

20 N, 100 rpm
Strain Gauges for Normal and Frictional Force

10
S. Mischer, et. al., 

1998.

Stainless Steel 316L; 

Ti6Al4V; 99.2% Pure 

Chromium; Low Carbon-

Pure Nickel

MSE

3 mm above 

and 5 mm 

away from 

sample

Pt Wire PVC 0.5 M H2SO4; 0.5 M Na2SO4

Alumina Pin (D= 4 mm) 

w/ Truncated Cones (D= 

.5 mm, 120* Included 

Angle)

Pin Reciprocal Linear; 5 Hz; Triangular Waveform 

Signal of Constant Amplitude; Track Length: 5 mm; 

Rest-time = 20 ms; 5 N = 25 MPa

Load Cell for Normal Force, Piezoelectric Force 

Transducer for Frictional Force, a LabView software

11
M. Azzi  and J.A. 

Szpunar, 2007.
ASTM F67 Pure Ti SCE _ _ _ Pt Coil _ _ _

Ringer's Solution: 9.0 g/L 

NaCl, 0.4 g/L KCl and 0.17 

g/L CaCl2, 2.1 g/L NaHCO3

Alumina Sphere (D= 

3/16")

Reciprocal Rotation of Ball; Classic Slider-Crank 

Mechanism; 1 Hz; Track Length: 5.0 mm; 4.5 N
Load Cells for Normal and Frictional Force

12
S. Barril, et. al., 

2001.

TiN Coating on X20Cr13 

Steel
Ag/AgCl _ _ _ Pt Wire PVC Borate Solution, pH 8.4

Alumina Sphere (D= 6 

mm)

Reciprocal Linear Motion of Ball; Truncated Triangular 

Waveform Signal; 2.0 Hz; Dead-time = 69 ms; Track 

Length: 5.0 mm; 5 N = 767 MPa

Piezoelectric Force Transducer for Normal and 

Frictional Force, a LabView Software

13 Y. Yan, et.al., 2006.

High and Low Carbon 

CoCrMo, Stainless Steel 

316L

Ag/AgCl
5 mm away 

from sample
Pt Wire _ _ _

50 % Calf Bovine Serum w/ 

0.1 % Sodium Azide; 

Dulbecco's Modified Eagle's 

Medium (DMEM); 0.36 % 

NaCl Solution

Silicon Nitride Sphere 

(D= 12 mm)
Reciprocating Working Electrode; 1 Hz; 80 N Load Transducer for Frictional Force, 

14
S. C. Ferreira, et. 

al., 2006.

ZrxONy Thin Films on 

AISI M2 High-Speed 

Steel

SCE _ _ _ Pt Wire Arcylic

20 ml; Artificial Sweat 

Solution: 7.5 g/L NaCl, 1.2 g/L 

KCl, 1 g/L CH4N2O, 1 g/L 

C3H6O3 

Alumina Pin
Reciprocating Linear Motion; 1 Hz; Track Length = 6 

mm; 5 N
_ _ _

15
L. Benea, et. al., 

2009.

20 nm Ni-SiC Coatings on 

Stainless Steel

Hg/Hg2SO4/S

aturated 

K2SO4

_ _ _
Circular Pt 

Gauze
_ _ _ 0.5 M K2SO4

Alumina Pin (D= 7 mm) 

w/ Spherical End (D= 200 

mm)

Intermittent Unidirectional Circular Motion r= 8 mm;  

30-120 rpm; 5 - 20 N; Dead-time = .5 -20 s
_ _ _

16
F. Bratu, et. al., 

2007.

50 um Ni-SiC Coatings on 

AISI 304L Stainless Steel

Ag/AgCl (3 M 

KCl)
_ _ _

Pt 

Microelectrod

e

_ _ _ 0.5 M Na2SO4, pH 6.5
Corundum Sphere (D= 10 

mm)

Reciprocal Rotation of Ball (Fretting); 10 Hz; 

Truncated Triangular Waveform Signal of Constant 

Amplitude; Track Length: 200 um; 1, 2, and 5 N = 493, 

621, 842 Mpa; Dead-time = 6.6 s

_ _ _

Working Electrode Reference Electrode Counter Electrode Cell Material Electrolyte Pin (Counter Body) Pin Movement 



Tribocorrosion Apparatus 
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Tribocorrosion Apparatus 
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Validation: Potentiodynamic 
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A) Initiation of sliding = cathodic shift  current range of 1 and 100 µ A = the passive layer is formed and destroyed during 

sliding. The passivation current (IPASS) is similar to those reported in literature.1-4 The sloped IPASS region indicates increasing 

surface damage due to corrosion and wear. B) Ecorr values are notably higher for tribocorrosion.  

 
1. Hwa J, Olivares-navarrete R, Baier RE, et al. Acta Biomater. 2012;8(5):1966–75. 

2. Liu C, Chu PK, Lin G, Yang D. Corros. Sci. 2007;49(10):3783–3796.  

3. Mathew MT, Uth T, Hallab NJ, Pourzal R, Fischer a., Wimmer M a. Wear. 2011;271(9-10):2651–2659. 

4. Mathew MT, Abbey S, Hallab NJ, Hall DJ, Sukotjo C, Wimmer MA. J. Biomed. Mater. Res. B. Appl. Biomater. 2012;100(6):1662–71.  



Validation: Free Potential 
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1. M. P. Licausi et al. J. Phys. D: Appl. Phys. 46 (2013) 404003. 

2. J. Chen et al. Materials and Corrosion, 64 (5) 2013. 

3. Iwabuchi et al. Wear. 263 (2007) 492-500. 

4. F Galliano et al. 145 (1–3), 2001, Pages 121–131 

5. A C Alves et al 2013 J. Phys. D: Appl. Phys. 46 404001  

6. Sivakumar B, Kumar S, Sankara Narayanan TSN. Wear. 2011;270(3-4):317–324. 

7. Mathew MT, et al Wear. 2011;271(9-10):2651–2659. 

     Before Sliding 

1)  -0.2 to -0.3 V 

2)  -0.2 to -0.3 V 

3)  -0.3 V 

4)  0.0 V 

5)  0.0 to -0.2 V 

During Sliding 

 -0.7 V 

-0.6 V 

-1.1 V 

-0.6 V 

-1.10 V 

Literature Values1-5 

A-B) Potential increased from OCP in the 

cathodic direction to a range of -0.7 and -

0.9 V. Such a trend is observed in several 

studies.1,6,7 

C-D) Initiation and cessation of sliding 

results in gradual depassivation and 

repassivation, respectively. 



Validation: Potentiostatic 
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A-B) In similar studies involving neutral 

pH, the current values increased 

dramatically for tribocorrosion PS scans.1-

3 In the present study, the current values 

fluctuated between 8.0 and 14.0 µA 

during sliding.  

C-D) Initiation and cessation of sliding 

results in gradual depassivation and 

repassivation, respectively. Notice the 

step-wise decrease in current values after 

cessation of sliding.  

1. M. P. Licausi et al. J. Phys. D: Appl. Phys. 46 (2013) 404003. 

2. Barril S, Mischler S, Landolt D. Wear. 2004;256(9-10):963–972.  

3. Mathew MT, Abbey S, Hallab NJ, Hall DJ, Sukotjo C, Wimmer MA. J. Biomed. Mater. Res. B. Appl. Biomater. 2012;100(6):1662–71. 



Results 
• The tribocorrosion data of control  Ti-V sample validate the apparatus 

• Now lets look at results of thermally treated samples 

• Temperatures of 200, 400, and 700 °C are chosen for their amorphous, mixed 
anatase-rutile, and rutile crystalline structures, respectively 

• In addition, 1 h and 6 h duration of treatment provided variation in thickness 
of thermally formed oxides 

10 



200 °C 1 h 200 °C 3 h 200 °C 6 h 

400 °C 1 h 400 °C 3 h 400 °C 6 h 

700 °C 1 h 700 °C 6 h 700 °C 6 h 



Control, 200, 300, and 400 °C TO-treated samples have similar surface roughness 
while 500, 600 and 700 °C TO-treated sample shows an increase in surface 
roughness.  

White Light Interferometry 
Average Roughness 
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Potentiodynamic pH 6.5 
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Wear Scar Depth 

Free Potential 

• Control = ≤ 14 µm (12.4 ± 1.5 µg) 

• 200 C 6 h = ≤ 12 µm 

• 400 C 6 h = ≤ 14 µm  

• 700 C 6 h = ≤ 3 µm 

 

 

 

 

 

 

Potentiostatic 

• Control = ≤ 19 µm (12.0 ± 0.9 µg) 

• 200 C 1 h = ≤ 19 µm  

• 200 C 6 h = ≤ 16 µm 

• 400 C 1 h = ≤ 19 µm 

• 400 C 6 h = ≤ 15 µm  

• 700 C 1 h = ≤ 3 µm 

• 700 C 6 h = ≤ 3 µm 

 

 

 



Results 
• Based on PS scans, 1 h vs. 6 h thermal treatment does not seem to 

affect the results 

• 700 °C of thermal treatment seems to have preferable results 

• Samples thermally treated at 200 °C (thin oxide, amorphous) 

• Displaying better corrosion results  

• Deeper wear scars  

• Samples thermally treated at 700 °C (thick oxide, rutile) 

• Displayed better tribocorrosion results 

• Shallower wear scars 
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Discussion 
• Hypothesis: 

• Crystalline and thicker oxide will protect bulk Ti-V from tribocorrosion and corrosion as compared to 
native TiO2 

• Brittle/crystalline TiO2 created at higher temperatures  
• Better wear resistance 

• Amorphous TiO2 created at lower temperatures  
• Improved corrosion resistance, but poor wear resistance 

• Need to have combination of thick but amorphous oxide 
• Sub-oxides created underneath the TiO2 is amorphous 

• Future Direction:  
• Complete tribocorrosion project for AS pH 3.0 
• Thermally treat Ti-V samples followed by polishing/sanding to remove the brittle/crystalline TiO2  
• Stay below 650 °C (melting point of aluminum) 
• AS is for dental applications, expand to orthopaedic applications: synovial fluid 
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